
EU CRA:
Time to Engineer
Up!
Up Your Engineering Game:
Why You Need SBOMs and Dependency
Management

Peter N. M. Hansteen

https://nxdomain.no/sbom.pdf

EU CRA: It's Later Than You Think, Time to Engineer Up!

• December 12 2027, it’s too late.

• On December 11 2027, the European Union Cyber Resilience Act (CRA) enters fully into force

=> Products with digital elements must come with full overview of and insight into
– Description and origin of all components
– Description and origin of all dependencies

Or, no CE mark of approval for you or your product

Reporting required for all vulnerabilities and incidents will have been required since September 11,
2026.

[Full text article: EU CRA: It's Later Than You Think, Time to Engineer Up!]

Public 3

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://single-market-economy.ec.europa.eu/single-market/goods/ce-marking_en
https://nxdomain.no/~peter/eu_cra_its_later_than_you_think_time_to_engineer_up.html

Upping Your Engineering Game

• Are you

a coder, or

an engineer who codes?

• This is about upping your engineering game
– Taking your software engineering to “real engineering” level
– Focus on doing things right, proper practices for quality engineering

The anecdote about the iron ring worn by Canadian engineers is useful to calibrate your mindset and level of ambition.

Public 4

https://en.wikipedia.org/wiki/Iron_Ring

Dear Developer, do you know what your code does?

Public 5

You wrote it, but do you know *all* it does? –

TL; DR:

Your code has dependencies.

The rest of the world, including customers recently started to care about which ones.

But first, a bit of history.

“Just a bit of typing”

Public 6

Software is a new phenomenon.

Poorly understood by the public

Considered “just a bit of typing”

Not important in itself, but a necessary evil

Poorly understood by non-techies

But then suddenly software turned important

Public 7

First, the Internet happened and raised our profile

Bugs in local code started biting

Bugs in dependencies started biting – log4j comes to mind

Process bugs started happening – Solarwinds SUNBURST comes to mind

Dependencies became a thing

Public 8

• Next up, memes like ->
(see XKCD #2347, but also the explainer)

 =>

 Supply chain management

 and

 dependency management

 came into focus

 !! Known your components and dependencies !!

XKCD by Randall Munroe, licensed under CC BY

https://xkcd.com/2347/
https://www.explainxkcd.com/wiki/index.php/2347:_Dependency
https://en.wikipedia.org/wiki/Supply_chain_management
https://creativecommons.org/licenses/by/3.0/

No project is an island

• We write software
• Which depends on other software
• Which interacts with other software
• Which again interacts with other components (hardware, humans)
• To run important stuff
• Nothing exists in actual isolation – No project is an island

Public 9

Learn from those
who build important
things

Public 10

• What to those who build important things
do?

• Real engineers with real plans

are required to submit a

“Bill of Materials”

aka BOM for each delivery

What do
engineers do?

Public 11

• Create a plan
• A Bill of Materials (BOM) is required for all

deliveries
• The BOM lists all component parts
• The BOM typically also references and

serves as reference for maintenance docs

Libre software has package management already

Public 12

package management

In the Open source / Free software / Libre Software world, we have a long history of
package management systems that take care of runtime dependencies for installation
and configuration

Those in turn depend on build systems that take care of buildtime dependencies and to
generate installable packages

The information to build a Software Bill of Materials is right there in our source code

In addition, we tend to have runtime vulnerability scanners to look for bugs and reported
weaknesses and CVEs

https://en.wikipedia.org/wiki/Package_manager

Introducing: A Software Bill of Materials (SBOM)

• Nuts and bolts aside, the legal framework is:

US Executive Order 14028 of May 12, 2021, Improving the Nation's Cybersecurity, (summarized) – USA: NTIA.gov

or

EU Cyber Resilience Act (CRA), also more reader friendly at the Cyber Resilience Act start page (EU/EEA)

• This legislation is in force or is soon to be, main concepts are taking the dependency information we have and present for
compliance in actionable form. Inclusion of security info such as CVEs much appreciated.

• The main takeaway:

 The information we need is in our code; we need to make generating for compliance effortless and painless.

Public 13

https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.ntia.gov/page/software-bill-materials
https://www.ntia.gov/
https://eur-lex.europa.eu/eli/reg/2024/2847/2024-11-20
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures

We’re real engineers now, Sparky! We have tools!

• Mostly from open source circles, two SBOM specs with tool suites emerged:

Open Worldwide Application Security Project (OWASP) CycloneDX

 and

Linux Foundation’s System Package Data Exchange specification (SPDX)

• For tools and guidance on both, awesome-sbom (github.com) is a good place to start.

• Conversion between the two formats is common and available from several tools

Public 14

https://cyclonedx.org/
https://spdx.github.io/spdx-spec/v3.0.1/
https://github.com/awesomeSBOM/awesome-sbom
https://github.com/awesomeSBOM/awesome-sbom
https://github.com/awesomeSBOM/awesome-sbom

Tools and how to use them

• Using syft to generate and bomber to present, go to a project directory and do
 $ syft . -s all-layers -o cyclonedx-xml | xq

 or the json equivalent
 $ syft . -s all-layers -o cyclonedx-json | jq

• If you want a html report with known vulnerabilities
 $ syft . -o cyclonedx-json | bomber scan --provider ossindex --output=html

Note: For this particular command to work, you also need to supply provider login credentials (available with free registration),
see the Bomber provider documentation.

Public 15

https://github.com/anchore/syft
https://github.com/devops-kung-fu/bomber
https://github.com/devops-kung-fu/bomber?tab=readme-ov-file#providers

Your SBOM, the build artifact

You probably want your pipeline to produce SBOM build artifacts.

 For inclusion in a CI/CD pipeline you may want
 # Make sure you include the - character at the end of the command.

 # This triggers bomber to read from STDIN

 syft packages . -o cyclonedx-json | bomber scan --provider ossindex --output json –

Note: For this particular command to work, you also need to supply provider login credentials (available with a free
registration), see the Bomber provider documentation.

Also, reports and conversions, see the docs for your toolset or get inspired by looking at awesome-sbom

Public 16

https://github.com/devops-kung-fu/bomber?tab=readme-ov-file#providers
https://github.com/awesomeSBOM/awesome-sbom
https://github.com/awesomeSBOM/awesome-sbom
https://github.com/awesomeSBOM/awesome-sbom

Your tools may already have (some of) this

• Some tools have SBOM generating and presentation already. Harbor has automatic SBOM generation on image push using
trivy:

•

Public 17

https://goharbor.io/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/pulling-pushing-images/
https://github.com/aquasecurity/trivy

Track your dependencies on the fly

• When you have the tools in hand, when a customer asks about your tooling:

you could do
$ cd myproject

$ cdxgen .

and get a bom.json with all your customer wants to know (see the article)

Public 18

There is more -

Public 19

Your SBOM-savvy stakeholders may already have appropriate processing tools
at their end. Poke them!

Other aspects of BOM generation are being worked on, including
OBOM (Operating system Bill of Materials)
SaaSBOM (Software as a Service Bill of Materials)
CBOM (Cryptography Bill of Materials)
… and others

There is more to SBOMs out there, to impress colleagues and customers!

Now It’s Your Turn: Get The Tools

• For further exploring, you need to get the tools:

• cdxgen lives at https://github.com/CycloneDX/cdxgen
• syft can be found at https://github.com/anchore/syft
• bomber is at https://github.com/devops-kung-fu/bomber

Follow the install instructions for each, On Linux, they are likely in your package system. On macOS, use brew,

$ brew install $toolname

Again, follow the install instructions for your environment.

Or use
$ git clone $toolname

(As one does)

Public 20

https://github.com/CycloneDX/cdxgen
https://github.com/CycloneDX/cdxgen
https://github.com/CycloneDX/cdxgen
https://github.com/anchore/syft
https://github.com/anchore/syft
https://github.com/anchore/syft
https://github.com/devops-kung-fu/bomber
https://github.com/devops-kung-fu/bomber
https://github.com/devops-kung-fu/bomber
https://github.com/devops-kung-fu/bomber
https://github.com/devops-kung-fu/bomber
https://github.com/devops-kung-fu/bomber
https://github.com/devops-kung-fu/bomber

Tools in Hand, Dig Into a New Project

Find a project. Do you have one of your own? Get the code.

Go to the project main directory. Run
$ cdxgen .

Watch the output. It will be useful to run this in a script(1) session.

This is where the fun starts -

Public 21

https://man.openbsd.org/script

Tools in Hand, Dig Into a New Project (2/2)

Watch the output. It will be useful to run this in a script(1) session.

• Find out:

What is the number of dependencies for this code base? How many direct dependencies? How many indirect ones
(dependencies of dependencies)?

• Does the code base itself have any known problems, reported as CVEs? How many for the dependencies?

You may choose to inspect the tools themselves.

Remember, there may be challenges, like in this session. Don’t let noisy errors discourage you!

This is where you pick up your engineering game

Public 22

https://man.openbsd.org/script
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://nxdomain.no/~peter/blogpix/sbomtools/cdxgen-1stcheck.txt

Resources for further reading

• Linux Foundation Training:
Automating Supply Chain Security: SBOMs and Signatures (LFEL1007) is a short but information- and reference-filled introduction (free,
requires registration, gives you a badge at the end)
Understanding the EU Cyber Resilience Act (CRA) (LFEL1001) Focused on the EU CRA, gives an overview with lots of useful references,
nominally a 1 hour course worth taking

• The Software Bill of Materials home page at NTIA is the mother ship of SBOM documentation
• Browse OWASP CycloneDX for all things about the CycloneDX specification and related tools, also their CycloneDX tool center
• Browse the System Package Data Exchange specification (SPDX) for all things SPDX (supported by the Linux Foundation), including

copious linked reference material
• awesome-sbom is a curated list of SBOM tools and resources
• EU residents will want to poke around the Cyber Resilience Act site for reference
• Brewing Transparency: How OWASP's TEA Is Revolutionizing Software Supply Chains is a summary of recent work on OWASP

Transparency Exchange API (TEA)
• SBOM buyer’s guide: 8 top software bill of materials tools to consider is a readable overview of (some) SBOM tools
• Olle Johansson's FOSDEM presentations are among several good SBOM talks at that conference (search the site for more)
• Peter N. M. Hansteen: Open Source in Enterprise Environments - Where Are We Now and What Is Our Way Forward (2022, also here)

has some insights on how open source software plays a crucial role in enterprise environments and elsewhere
• Peter N. M. Hansteen: No Project Is an Island: Why You Need SBOMs and Dependency Management (also here)
• Peter N. M. Hansteen: EU CRA: It's Later Than You Think, Time to Engineer Up! (this presentation in article form, also here , slides)

Public 23

https://trainingportal.linuxfoundation.org/courses/automating-supply-chain-security-sboms-and-signatures-lfel1007
https://trainingportal.linuxfoundation.org/courses/automating-supply-chain-security-sboms-and-signatures-lfel1007
https://trainingportal.linuxfoundation.org/courses/automating-supply-chain-security-sboms-and-signatures-lfel1007
https://trainingportal.linuxfoundation.org/courses/understanding-the-eu-cyber-resilience-act-cra-lfel1001
https://www.ntia.gov/page/software-bill-materials
https://cyclonedx.org/
https://cyclonedx.org/tool-center/
https://spdx.github.io/spdx-spec/v3.0.1/
https://www.linuxfoundation.org/
https://github.com/awesomeSBOM/awesome-sbom
https://github.com/awesomeSBOM/awesome-sbom
https://github.com/awesomeSBOM/awesome-sbom
https://github.com/awesomeSBOM/awesome-sbom
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://www.linkedin.com/pulse/brewing-transparency-how-owasps-tea-revolutionizing-software-fahey-sgn2e/
https://www.linkedin.com/pulse/brewing-transparency-how-owasps-tea-revolutionizing-software-fahey-sgn2e/
https://www.csoonline.com/article/573225/8-top-sbom-tools-to-consider.html
https://www.csoonline.com/article/573225/8-top-sbom-tools-to-consider.html
https://fosdem.org/2025/schedule/speaker/olle_e_johansson/
https://fosdem.org/2025/schedule/speaker/olle_e_johansson/
https://nxdomain.no/~peter/opensource_enterprise_notes.html
https://nxdomain.no/~peter/opensource_enterprise_notes.html
https://nxdomain.no/~peter/opensource_enterprise_notes.html
https://bsdly.blogspot.com/2022/09/open-source-in-enterprise-environments.html
https://nxdomain.no/~peter/no_project_is_an_island.html
https://bsdly.blogspot.com/2025/03/no-project-is-island-why-you-need-sboms.html
https://nxdomain.no/~peter/eu_cra_its_later_than_you_think_time_to_engineer_up.html
https://bsdly.blogspot.com/2025/09/eu-cra-its-later-than-you-think-time-to.html
https://nxdomain.no/~peter/eu_cra_its_later_than_you_think_time_to_engineer_up.pdf

Thank you

	Slide 1: EU CRA: Time to Engineer Up!
	Slide 2: https://nxdomain.no/sbom.pdf
	Slide 3: EU CRA: It's Later Than You Think, Time to Engineer Up!
	Slide 4: Upping Your Engineering Game
	Slide 5: Dear Developer, do you know what your code does?
	Slide 6: “Just a bit of typing”
	Slide 7: But then suddenly software turned important
	Slide 8: Dependencies became a thing
	Slide 9: No project is an island
	Slide 10: Learn from those who build important things
	Slide 11: What do engineers do?
	Slide 12: Libre software has package management already
	Slide 13: Introducing: A Software Bill of Materials (SBOM)
	Slide 14: We’re real engineers now, Sparky! We have tools!
	Slide 15: Tools and how to use them
	Slide 16: Your SBOM, the build artifact
	Slide 17: Your tools may already have (some of) this
	Slide 18: Track your dependencies on the fly
	Slide 19: There is more -
	Slide 20: Now It’s Your Turn: Get The Tools
	Slide 21: Tools in Hand, Dig Into a New Project
	Slide 22: Tools in Hand, Dig Into a New Project (2/2)
	Slide 23: Resources for further reading
	Slide 24: Thank you

